

Tunable Diode Laser for Harsh Combustion Environments

W. Von Drasek American Air Liquide, 5230 S. East Ave. Countryside, II 60525

Materials, Glass, and Sensors Project and Portfolio Review Meeting Arlington, Virginia June 21-24, 2004

Tunable Diode Laser for Combustion Process Monitoring

Goal: Develop and test an industrial multiple gas near-IR diode laser sensor for O₂, CO, H₂O and Temperature monitoring targeted for harsh process monitoring.

Challenge: Demonstration of the technology measurement accuracy and reliability with minimum maintenance for dynamic high temperature and high particle density processes

Benefits: Cross-cutting technology supporting all industrial processes requiring combustion atmosphere monitoring and control.

FY04 Activities: Industrial testing on North Star Steel Electric arc furnace. Identify the required configuration for continuous off-gas monitoring

Diode laser Electronics and Data Acquisition System

Participants:

Tunable Diode Laser for Combustion Process Monitoring

Cross-cutting technology supporting all industries requiring combustion atmosphere monitoring and control

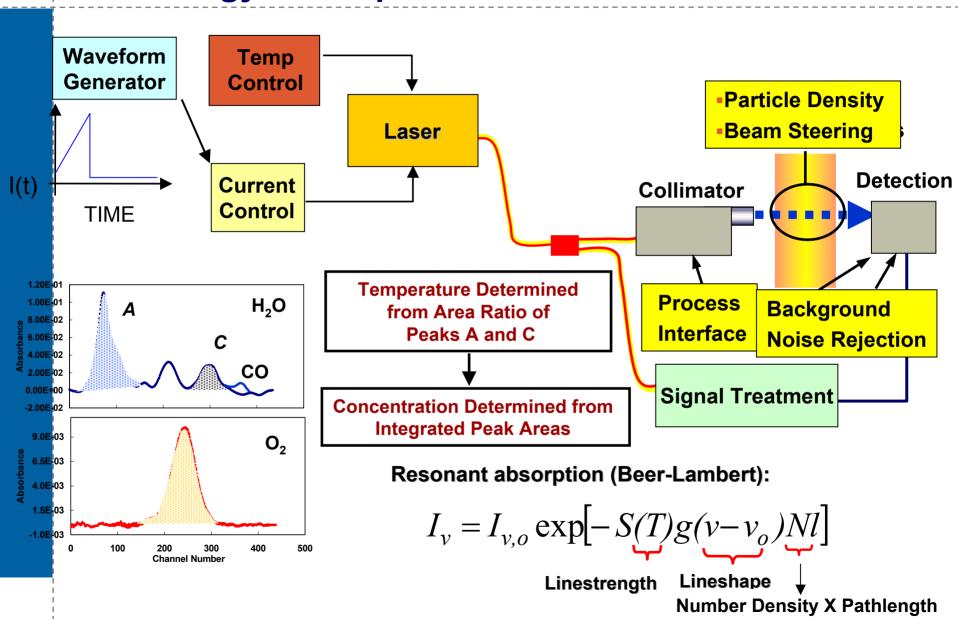
Barrier

Pathway

Metrics

- •Lack of sensor technology suitable for *in-situ* process monitoring at high temperatures and high particle densities
- Lack of real-time sensors
- Lack of low maintenance sensors

- Develop multiple species in-situ nonintrusive laser-based measurement system
- •Identify high temperature spectral region
- Multiple wavelength capability
- •Fabricate hardened system adaptable for a variety of industrial monitoring applications
- Industrial evaluation for optimization


- •Long-term measurement demonstration
- Large dynamic range
 - →Concentration (0-70%)
 - →Temperature (800 -2000 °C)
- Evaluate frequency and level of maintenance
- Measurement reliability

Ex. for EAF application

Benefits (est.)	Yearly
Energy Savings	640 million KWh
Cost Savings	\$19 million

Technology Concept

Technical Progress and Outlook

Overall program progress/accomplishments to date

Milestone	Due Date	Completion Date	Comments
Pilot Furnace Test Platform	10/00	9/01	Testing under Simulated industrial conditions
Prototype Industrial Sensor	9/01	1/02	Laser Supply Issue Resulted in Program Adjustments (org. 5/01)
Multi-species validation test	11/01	2/02	Validation and system testing CO/H ₂ O & T only
Industrial Beam Launch & Receiver Modules	11/01	4/02	Broad wavelength sources
Pilot Scale Testing	11/01	4/02	Completed but revisited as needed
1 st Industrial Field-testing	1/02	5/02	Steel Reheat Furnace
Pilot Furnace Evaluation & Refinement	9/02	1/03	Characterization & Calibration
2 nd Industrial Test Campaign	10/02	3/03	Secondary Aluminum Melter
3 rd Industrial Test Campaign	2/03		EAF Test Completed by 12/30/04

Technical Progress and Outlook

Program progress/accomplishments for last year

Milestone/Goal	Due Date	Completion Date	Comments	
MGS System Upgrades	9/03	3/04	Requirements for EAF. Delayed due to finalizing test agreement.	
MGS On-demand power control	12/03	2/04	Add-on option	
Multi-section laser	12/03		Preliminary testing started but now on-hold pending available funds	
EAF Phase I Testing	10/03		Establish baseline performance. Installation still in-progress	
EAF Phase II Testing	12/03		On-demand power control & Multi- section Laser plus other enhancements	
EAF PHASE III Testing	4/03		Long-term testing in best system configuration Completed by 12/04	

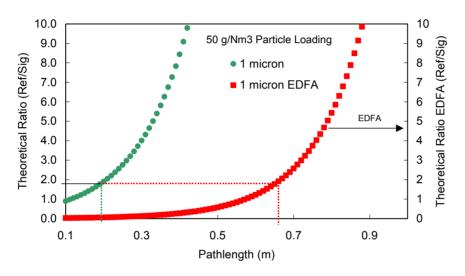
MGS System Upgrades

 System modifications resulting from pilot furnace and industrial testing experience

Modification	Driver	
Historical logging of user selected parameters	Overall system evaluation	
GUI for lineshape recording	Overall system evaluation	
Extraneous data filtering	Use with process control	
Soft line-locking option	Eliminate wavelength drifting	
A/D channel crosstalk problem resolved	Remove potential noise source	

- Fiber optic communication system
 - ✓ Bi-directional
- Remote alignment
- Packaging of the electro-optic components
- Overall system hardening

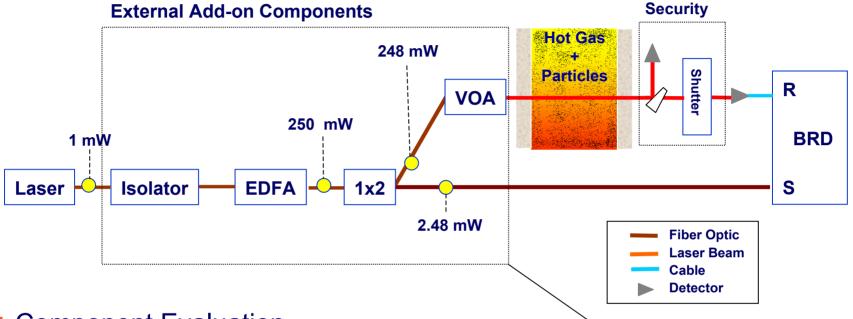
Requirements for EAF Application



On-Demand Power Control (ODPC)

Technology Implementation Objective

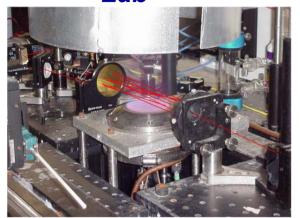
Improved transmission in dirty flows

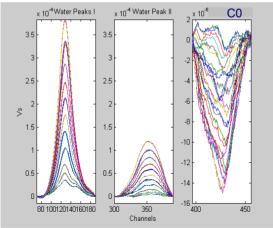

- Improved background discrimination
- Decreased sensitivity to beam steering and alignment

ODPC Strategy

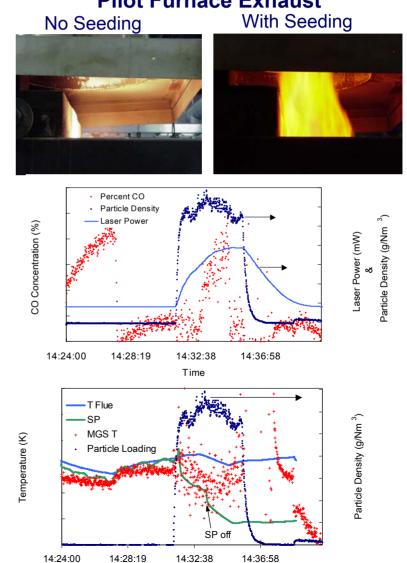
System Configuration

- Component Evaluation
 - EDFA Characterization
 - VOA Characterization
- Control Software Development

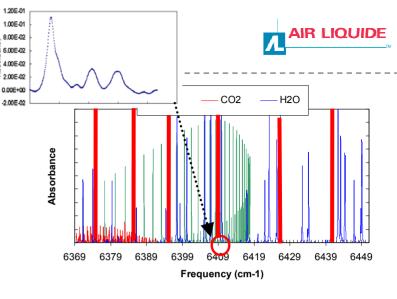



ODPC Measurement Results

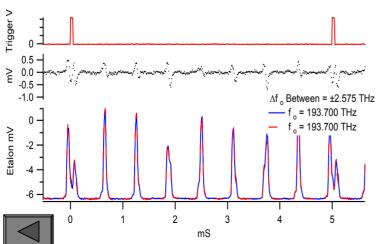
Evaluation on lab burner

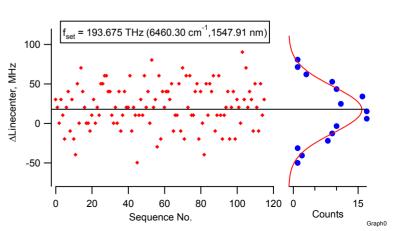

Lab

On-Demand Power Control Software Pilot Furnace Exhaust



Time


Multi-section Laser

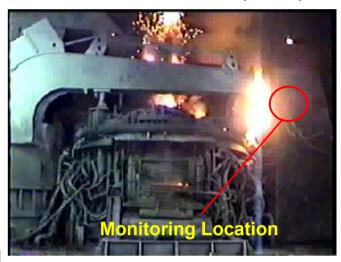

Technology Implementation Objective

- Expanded tuning range from a single device
 - Reduced system complexity and cost
 - Improve dynamic range

- Agreement signed with manufacturer to provide prototype devices for evaluation
 - User selected scan position
- First prototype device received November 2003
- Preliminary device characterization launched

Motivation for EAF Testing

- Considered one of the most challenging measurement applications
- In-situ Measurement Advantages
 - > EAF off-gas Monitoring
 - Low maintenance
 - ✓ Real-time measurement
- ➤ Coupling with Post-combustion Control


		Theoretical real time oxygen injection	Control by set- points	Extractive Sampling	Real-time MGS
S	avings	9.5-12.7 kWh/t	50-80 %	60-70 %	100 %

Potential US EAF Energy Savings → 640,000,000 KWh (\$19MM)

MGS System Requirements

- ➤ Module Hardening
- >Long-distance signal transmission
 - ✓ Immune to EMI
- >Alignment Stability

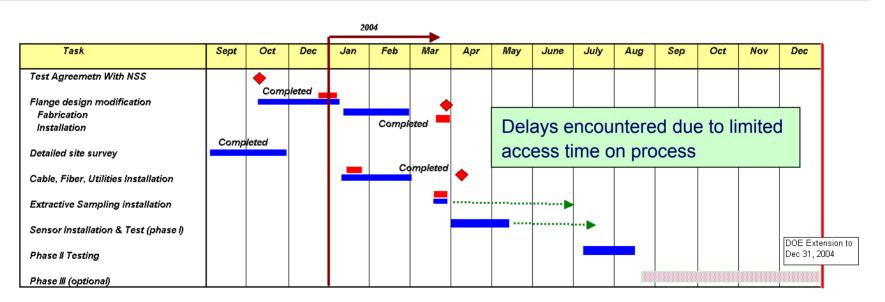
Electric Arc Furnace (Steel)

Typical EAF Conditions

- ✓ Batch Process (60-90 minutes)
- ✓CO Profile (0-50%)
- √Temperature (1000-1600 °C)
- ✓ Particle Density -> 150 g/Nm³

EAF Testing Plan

Phase I

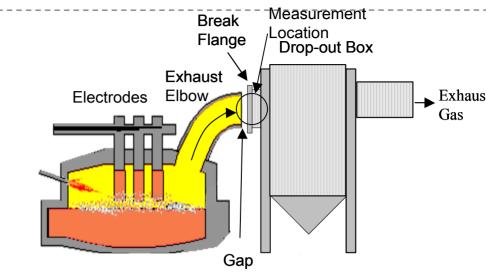

- Basic configuration (Laser system)
- Hardened modules
- Fiber optic communication
- Remote alignment

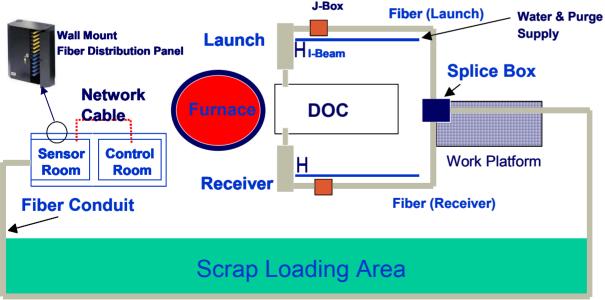
Phase III

- Long-term testing in best configuration
- Measurement reliability
- Maintenance evaluation

Phase II

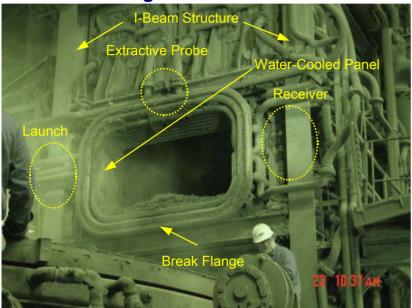
- On-demand power control
- Enhancements based on Phase I results



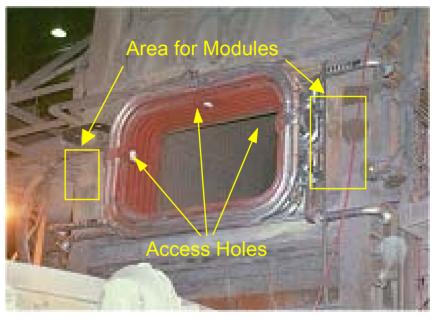

NSS Process Modifications

Installation Requirements

- ✓Line-of-sight access
- √Rigid module mounting
- ✓ Cooling water supply
- ✓ Purge gas supply
- √ Fiber Optic Cabling

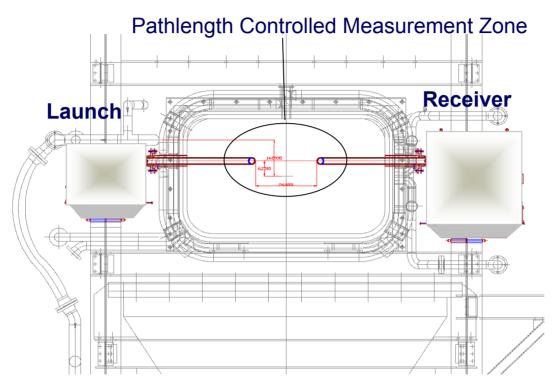

Total Length of Fiber Run -> 350-400 ft.

NSS Optical Access



Design and Fabrication of a new water cooled duct section

Existing Water Cooled Panel



- Duct modification requirements
 - Reroute water feed and return lines
 - Maintain pressure drop with access ports added
- Duct design and installation completed by March 2004
- NSS cost-share of ~\$35K incurred from lost production from installation

NSS Module Design and Process Interface

- Module support on main I-beam structure
- Design incorporates alignment adjustment
- **Water-cooled Faraday cage module for electro-optic components**
 - Water-cooling shields against intense radiation load
 - Heat-sink for multiple electronic modules and power supplies
 - Dual box design will guard against EMI and EMF
 - Protection against flying debris

Market Potential

Commercialization plan

- Identified Instrument manufacturing partner
 - Well established industrial instrument manufacturer
 - Experience in TDL systems
 - Technology transfer initiated
- Develop Commercial Offer
 - 2004 time horizon
 - Sensor technology/process control
 - Selected markets
 - System tailored to process needs

Continued Development Post-OIT

- Synergy with manufacturing partner
- Technology evaluation and integration
 - Multiplexed systems
 - Emerging laser technology
- Explore new applications

Program Summary

Industrial Prototype Development

- Spectral region identified
- Single line-of-sight access for multiple wavelength launch and receive design (.76 μm & 1.5 μm)
- Thorough testing on pilot furnace under industrial simulated conditions
- Incorporate On-Demand Power Control system
- Process interface designs developed for different monitoring applications

Industrial Process Monitoring

- Steel reheat furnace monitoring (2001-2002)
 - Detected dynamic process conditions
 - Measurements near billet surface
 - Hot installation sensor
- Reverberatory aluminum melter (2002-2003)
 - · In-situ monitoirng near bath
 - Performed low-level process adjustments → Fuel Savings > 5%
 - Hot installation for optical access and sensor
- EAF site preparation underway with testing starting in July 2004

■ Intellectual Property/Publications

- 6 patent applications filed
- 7 conference papers presented